Published November 22, 2021
| Version
v1
Dataset
Open
Dataset for Shang et al. 2021: Pollen observations at four EARLINET stations during the ACTRIS-COVID-19 campaign
- 1. Finnish Meteorological Institute, Kuopio, Finland
- 2. Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
- 3. University of Warsaw, Faculty of Physics, Poland
- 4. Deutscher Wetterdienst, Meteorologisches Observatorium Hohenpeißenberg, Hohenpeissenberg, Germany
Contributors
Data collectors:
- 1. Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Potenza, Italy
- 2. Deutscher Wetterdienst, Observatorium Hohenpeißenberg, Hohenpeißenberg, Germany
- 3. Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
- 4. National Institute of R&D for Optoelectronics, Magurele, Romania
- 5. Ludwig-Maximillian Institute for Meteorology, Munich, Germany
- 6. Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, Kuopio, Finland
- 7. University of Warsaw, Faculty of Physics, Warsaw, Poland
Description
Lidar observations were analysed to characterize atmospheric pollen at four EARLINET (European Aerosol Research Lidar Network) stations (Hohenpeißenberg, Germany; Kuopio, Finland, Leipzig, Germany; and Warsaw, Poland) during the ACTRIS-COVID-19 campaign in May 2020. The re-analysis lidar data products, after the centralized and automatic data processing with the Single Calculus Chain (SCC), were used in this study, focusing on particle backscatter coefficients at 355 nm and 532 nm, and particle linear depolarization ratios (PDRs) at 532 nm. A novel method for the characterization of the pure pollen depolarization ratio was presented, based on the non-linear least square regression fitting using lidar-derived backscatter-related Ångström exponents (BAEs) and PDRs. Under the assumption that the BAE between 355 and 532 nm should be zero (± 0.5) for pure pollen, the pollen depolarization ratios were estimated: for Kuopio and Warsaw stations, the pollen depolarization ratios at 532 nm were of 0.24 (0.19–0.28) during the birch dominant pollen periods; whereas for Hohenpeiβenberg and Leipzig stations, the pollen depolarization ratios of 0.21 (0.15–0.27) and 0.20 (0.15–0.25) were observed for periods of mixture of birch and grass pollen. The method was also applied for the aerosol classification, using two case examples from the campaign periods: the different pollen types (or pollen mixtures) were identified at Warsaw station, and dust and pollen were classified at Hohenpeißenberg station.
Other
ACTRIS Aerosol Remote Sensing COVID-19 campaign data of May 2020: https://doi.org/10.21336/gen.xmbc-tj86.Files
Files
(659.3 kB)
| Name | Size | Download all |
|---|---|---|
|
Checksum: md5:b45910951eb9e9ee8829f258eaff98bc
PID: http://hdl.handle.net/11304/5acd65c6-0080-4529-9363-f583d4daffcf |
92.5 kB | Download |
|
Checksum: md5:b7d1c3d2b9e1c0d4712102128bd2bd67
PID: http://hdl.handle.net/11304/b8596e8b-59ed-4144-8189-9d0ee2966aec |
77.7 kB | Download |
|
Checksum: md5:66e4081c47754e6f52e3d21df36d6bf0
PID: http://hdl.handle.net/11304/24c89f91-9108-41a6-afe4-eddef5ca0288 |
94.3 kB | Download |
|
Checksum: md5:fce1d0de844b37ba1844743a542c564e
PID: http://hdl.handle.net/11304/c01d2e9b-a38d-4351-a5ce-937c4f8e295d |
76.0 kB | Download |
|
Checksum: md5:cfd518996c9a1d327c1717c1776b3b75
PID: http://hdl.handle.net/11304/b1629c1a-640e-422d-a6a4-0772218c15ec |
284.6 kB | Download |
|
Checksum: md5:2b8a1ed9f3b430815354f8731850c280
PID: http://hdl.handle.net/11304/3e0a9442-76d7-4b82-bee1-f59ca28842f8 |
34.2 kB | Download |
Additional details
Identifiers
- URL
- https://etsin.fairdata.fi/dataset/79ad52a5-b78d-47b1-8563-8005fcdd9b7c
- b2rec
- 959be96f095640578eb5a7dc335c8b46
FMI metadata
- Source data
- Re-analysis aerosol optical products are available on the THREDDS server: https://login.earlinet.org:8443/thredds/catalog/covid19re/catalog.html
- Lineage
- ACTRIS Aerosol Remote Sensing COVID-19 campaign data of May 2020: https://doi.org/10.21336/gen.xmbc-tj86.
- Parameter
-
- Parameter name: Height above sea level
- Parameter unit: m
- Parameter description: altitude
- Parameter name: layer aerosol backscatter coefficient at 355 nm - layer screened - used in the paper
- Parameter unit: sr^-1 m^-1
- Parameter description: backscatter_coefficient_355
- Parameter name: layer aerosol backscatter coefficient at 532 nm - layer screened - used in the paper
- Parameter unit: sr^-1 m^-1
- Parameter description: backscatter_coefficient_532
- Parameter name: layer particle linear depolarization ratio at 532 nm - layer screened - used in the paper
- Parameter unit: 1
- Parameter description: particle_depolarization_532
- Parameter name: start time of 1 profile
- Parameter unit: seconds since 1970-01-01T00:00:00Z
- Parameter description: start_time
- Parameter name: stop time of 1 profile
- Parameter unit: seconds since 1970-01-01T00:00:00Z
- Parameter description: stop_time
- Parameter name: backscatter coefficient at 355 nm
- Parameter unit: sr^-1 m^-1
- Parameter description: raw_backscatter_coefficient_355
- Parameter name: backscatter coefficient at 532 nm
- Parameter unit: sr^-1 m^-1
- Parameter description: raw_backscatter_coefficient_532
- Parameter name: particle linear depolarization ratio at 532 nm
- Parameter unit: 1
- Parameter description: raw_particle_depolarization_532
- Parameter name: absolute statistical uncertainty of backscatter at 355 nm
- Parameter unit: sr^-1 m^-1
- Parameter description: error_backscatter_coefficient_355
- Parameter name: absolute statistical uncertainty of backscatter at 532 nm
- Parameter unit: sr^-1 m^-1
- Parameter description: error_backscatter_coefficient_532
- Parameter name: absolute statistical uncertainty of particle depolarization at 532 nm
- Parameter unit: 1
- Parameter description: error_particle_depolarization_532
- Topic category
- climatologyMeteorologyAtmosphere
Temporal Coverage
Ranges:
Start date: 2020-04-30
End date: 2020-05-31
End date: 2020-05-31