Published April 29, 2024 | Version v1
Dataset Open

Files containing data in Figures 1-6 in the manuscript Korhonen N. et al. "The usefulness of Extended-Range Probabilistic Forecasts for Heat wave forecasts in Europe"

  • 1. Finnish Meteorological Institute

Description

Files containing data in Figures 1-6 in the manuscript Korhonen N. et al. "The usefulness of Extended-Range Probabilistic Forecasts for Heat wave forecasts in Europe". Files and their contents: Fig1a_Heatwave_lower_threshold_ERA5.nc Data of Fig1a: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ERA5 reanalyses (Hersbach, et al. 2020). Data of Fig1b: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ensembles of the extended range hindcasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS; Cycles 46r1 and 47r1; Vitart, 2014) in forecast week 1. Fig1c_Heatwave_lower_threshold_EC_fc_LeadTime2week.nc Data of Fig1c: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ensembles of the ECMWF's hindcasts in forecast week 2. Fig1d_Heatwave_lower_threshold_EC_fc_LeadTime3week.nc Data of Fig1d: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ensembles of the ECMWF's hindcasts in forecast week 3. Fig1e_Heatwave_lower_threshold_EC_fc_LeadTime4week.nc Data of Fig1e: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ensembles of the ECMWF's hindcasts in forecast week 4. Fig2a_LHWMD_ERA5.nc Data of Fig2a: The duration of the longest period of heat wave days in each grid point over Europe defined from the ERA5 reanalysis data of summers 2000-2019. Fig2b_HWNP_ERA5.nc Data of Fig2b: the number of periods with heat wave days in the ERA5 reanalyses during 2000-2019. Fig3a_sharpness_diagram.txt Data of the sharpness diagram in Fig. 3a. Fig3b_reliability_diagram.txt Data of the reliability diagram in Fig. 3b. Fig4a_BSS_Week1_All_hindcasts.nc Fig4b_BSS_Week1_longest_HWS_only.nc Fig4c_BSS_Week1_excluding_longest_HW.nc Fig4d_BSS_Week2_All_hindcasts.nc Fig4e_BSS_Week2_longest_HWS_only.nc Fig4f_BSS_Week2_excluding_longest_HW.nc Fig4g_BSS_Week3_All_hindcasts.nc Fig4h_BSS_Week3_longest_HWS_only.nc Fig4i_BSS_Week3_excluding_longest_HW.nc Fig4j_BSS_Week4_All_hindcasts.nc Fig4k_BSS_Week4_longest_HWS_only.nc Fig4l_BSS_Week4_excluding_longest_HW.nc Data of the BSS in Figures 4a-l. Figure5a_ForecastWeek1.txt Figure5b_ForecastWeek2.txt Figure5c_ForecastWeek3.txt Figure5d_ForecastWeek4.txt Data of the boxplots in Figures 5a-d. Figure6a_ForecastWeek1.txt Figure6a_ForecastWeek2.txt Figure6a_ForecastWeek3.txt Figure6a_ForecastWeek4.txt Data of the boxplots in Figures 6a-d. Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 Global Reanalysis, Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803, 2020. Vitart F.: Evolution of ECMWF sub-seasonal forecast skill scores, Q. J. R. Meteorol. Soc., 140, 1889–1899, doi: 10.1002/qj.2256, 2014.

Files

Fig3a_sharpness_diagram.txt

Files (44.5 MB)

Name Size Download all
Checksum: md5:157ae690e26168d6ad15935d05050285

PID: http://hdl.handle.net/11304/8fab5b8f-90a3-4b5d-a3c1-be7ec8147740
1.5 kB Download
Checksum: md5:08cb8c0b311066757d77cc034d0528ed

PID: http://hdl.handle.net/11304/7f466d9f-d8a1-4e2e-96ad-43186c188d4c
1.6 kB Download
Checksum: md5:813469ad5f4a62d3298d86ac2367220e

PID: http://hdl.handle.net/11304/49155849-803b-4b29-b9be-40e0c2ad7aff
1.6 kB Download
Checksum: md5:51ad578d78b720cb03db7a6398f03bfe

PID: http://hdl.handle.net/11304/b1854429-1001-4217-8924-107ff311222a
1.6 kB Download
Checksum: md5:bf879903f805f376b1b37e7bad2c98bd

PID: http://hdl.handle.net/11304/23c2d6cc-b832-4ebe-8bf2-269bfb00d97a
1.6 kB Download
Checksum: md5:8940ef7a30dff26ab029fea9448f99f2

PID: http://hdl.handle.net/11304/072383d9-1ceb-45e7-a0bc-e3b849e6bffa
1.5 kB Download
Checksum: md5:4081991e0bcb4cefded0a84b4f0182c8

PID: http://hdl.handle.net/11304/60f02e05-4881-49ff-b0cc-28fc05d54d52
1.5 kB Download
Checksum: md5:ae01cf964a9ab530bdb0eaf31d36d1a4

PID: http://hdl.handle.net/11304/26325e19-ce58-41c1-9769-45a4b49f501d
1.3 kB Preview Download
Checksum: md5:60adcf70f4ac1dcef9d02d36f0912aac

PID: http://hdl.handle.net/11304/428c27ef-d9c4-413e-ab2e-f393757e76b9
2.8 kB Preview Download
Checksum: md5:8d831c45422caabcdd854c4b11b68633

PID: http://hdl.handle.net/11304/4760497e-04c0-4ceb-9697-85ccabb3f26f
1.5 kB Download
Checksum: md5:26f17f0e26012e9851d7aabfa942bde4

PID: http://hdl.handle.net/11304/f1beab4b-cdf4-440f-b714-05b73cd1619a
1.5 kB Download
Checksum: md5:2d17ae85a7cc6254900871aa96623254

PID: http://hdl.handle.net/11304/cf5ddd98-7f86-4064-8592-e2b0f838e3a3
1.5 kB Download
Checksum: md5:aa212b30074e4604b2282d8e67d634aa

PID: http://hdl.handle.net/11304/37cbae7d-118d-4254-919d-f3525593e546
1.5 kB Download
Checksum: md5:88ede3f2d6e6b8693cf6ebfd465dec5d

PID: http://hdl.handle.net/11304/17d3f5df-e396-4bab-bc08-457e2b0a2a2a
1.5 kB Download
Checksum: md5:6eb489740993469d615775a3998effc6

PID: http://hdl.handle.net/11304/c36e26d3-cdda-4f6b-800d-0470fedab36a
1.5 kB Download
Checksum: md5:ca7a2fe300ba32ed8b7e7c0b1e194f67

PID: http://hdl.handle.net/11304/2ffc83f6-94e3-4172-a133-04980cd33ba9
1.5 kB Download
Checksum: md5:95f2ce1f3cffe0c4918c7e22ed86213f

PID: http://hdl.handle.net/11304/e1f77dd4-65b9-441a-8cee-a3c6d16f0e52
1.5 kB Download
Checksum: md5:06ee1cb45102ce3f575774fdd4556ed8

PID: http://hdl.handle.net/11304/d0800765-76c1-4ac4-bfb9-d19c37b6a8c8
1.5 kB Download
Checksum: md5:af1a9f398f3f68c2d87d7a5029dcad96

PID: http://hdl.handle.net/11304/981ae93f-340b-4b9f-ab9d-0aef4cf82748
1.5 kB Download
Checksum: md5:d9fe61dd07c9302db65c6302a30001db

PID: http://hdl.handle.net/11304/6b8ae3fe-030a-40ce-a875-6eacd189f535
1.5 kB Download
Checksum: md5:8dfa249b052ec1c06ca31c24138c7bae

PID: http://hdl.handle.net/11304/2be83eba-3529-4e8a-b3c5-f55f45c302ba
1.5 kB Download
Checksum: md5:c2d269a09173aa9e4d26f1258d6f625e

PID: http://hdl.handle.net/11304/69b38f0c-1203-4a83-88fc-698d78e9014c
2.4 MB Preview Download
Checksum: md5:edd24c57a131c69d911509f9a2741210

PID: http://hdl.handle.net/11304/aede6012-81b8-4ce0-a7f5-4c07dbb0d9b8
2.4 MB Preview Download
Checksum: md5:af513b1caa02e51ae100f45877808fef

PID: http://hdl.handle.net/11304/98776010-b1bb-4169-8c56-18d09f04843e
2.4 MB Preview Download
Checksum: md5:90a0654b9dab7a6d1365e9f2d222f09d

PID: http://hdl.handle.net/11304/b88634e3-9ac1-49cc-ae4d-f38d3285bb94
2.4 MB Preview Download
Checksum: md5:6ddb86784bbcb6f2518df3b867ae44e2

PID: http://hdl.handle.net/11304/0c96d731-cd9f-46f7-9a19-c79cb83c41a6
8.2 MB Preview Download
Checksum: md5:3882a46be290a34f131b14d83dde0bb6

PID: http://hdl.handle.net/11304/6c7192f8-5c52-4605-9f1a-d2a8c525875c
9.3 MB Preview Download
Checksum: md5:66fbb5232a628f5d6437fab8beb1d33a

PID: http://hdl.handle.net/11304/a011e656-bea2-4c17-a3b4-080bb25774e9
8.9 MB Preview Download
Checksum: md5:663c681fcfd70b6af918b2dc1b25e6d9

PID: http://hdl.handle.net/11304/f6a2303d-27ed-499e-882f-26bd4c8f0711
8.5 MB Preview Download

Additional details

Identifiers

FMI metadata

Parameter
  • Parameter name: Figure1_Heatwave_lower_threshold
  • Parameter unit: Kelvin
  • Parameter description: the 90th percentile of the 5-day moving average temperature in summers 2000-2019
Topic category
climatologyMeteorologyAtmosphere

Temporal Coverage

Ranges:

Start date: 2000-05-31
End date: 2019-08-30

Spans:

Span:2000-2019