Published April 29, 2024
| Version
v1
Dataset
Open
Files containing data in Figures 1-6 in the manuscript Korhonen N. et al. "The usefulness of Extended-Range Probabilistic Forecasts for Heat wave forecasts in Europe"
Description
Files containing data in Figures 1-6 in the manuscript Korhonen N. et al. "The usefulness of Extended-Range Probabilistic Forecasts for Heat wave forecasts in Europe".
Files and their contents:
Fig1a_Heatwave_lower_threshold_ERA5.nc
Data of Fig1a: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ERA5 reanalyses (Hersbach, et al. 2020).
Data of Fig1b: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ensembles of the
extended range hindcasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS; Cycles 46r1 and 47r1; Vitart, 2014) in forecast week 1.
Fig1c_Heatwave_lower_threshold_EC_fc_LeadTime2week.nc
Data of Fig1c: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ensembles of the ECMWF's hindcasts in forecast week 2.
Fig1d_Heatwave_lower_threshold_EC_fc_LeadTime3week.nc
Data of Fig1d: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ensembles of the ECMWF's hindcasts in forecast week 3.
Fig1e_Heatwave_lower_threshold_EC_fc_LeadTime4week.nc
Data of Fig1e: The lower thresholds of heat wave days: the 90th percentile of the 5-day moving average temperature in summers 2000-2019 of the ensembles of the ECMWF's hindcasts in forecast week 4.
Fig2a_LHWMD_ERA5.nc
Data of Fig2a: The duration of the longest period of heat wave days in each grid point over Europe defined from the ERA5 reanalysis data of summers 2000-2019.
Fig2b_HWNP_ERA5.nc
Data of Fig2b: the number of periods with heat wave days in the ERA5 reanalyses during 2000-2019.
Fig3a_sharpness_diagram.txt
Data of the sharpness diagram in Fig. 3a.
Fig3b_reliability_diagram.txt
Data of the reliability diagram in Fig. 3b.
Fig4a_BSS_Week1_All_hindcasts.nc
Fig4b_BSS_Week1_longest_HWS_only.nc
Fig4c_BSS_Week1_excluding_longest_HW.nc
Fig4d_BSS_Week2_All_hindcasts.nc
Fig4e_BSS_Week2_longest_HWS_only.nc
Fig4f_BSS_Week2_excluding_longest_HW.nc
Fig4g_BSS_Week3_All_hindcasts.nc
Fig4h_BSS_Week3_longest_HWS_only.nc
Fig4i_BSS_Week3_excluding_longest_HW.nc
Fig4j_BSS_Week4_All_hindcasts.nc
Fig4k_BSS_Week4_longest_HWS_only.nc
Fig4l_BSS_Week4_excluding_longest_HW.nc
Data of the BSS in Figures 4a-l.
Figure5a_ForecastWeek1.txt
Figure5b_ForecastWeek2.txt
Figure5c_ForecastWeek3.txt
Figure5d_ForecastWeek4.txt
Data of the boxplots in Figures 5a-d.
Figure6a_ForecastWeek1.txt
Figure6a_ForecastWeek2.txt
Figure6a_ForecastWeek3.txt
Figure6a_ForecastWeek4.txt
Data of the boxplots in Figures 6a-d.
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 Global Reanalysis, Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803, 2020.
Vitart F.: Evolution of ECMWF sub-seasonal forecast skill scores, Q. J. R. Meteorol. Soc., 140, 1889–1899, doi: 10.1002/qj.2256, 2014.
Files
Fig3a_sharpness_diagram.txt
Files
(44.5 MB)
| Name | Size | Download all |
|---|---|---|
|
Checksum: md5:157ae690e26168d6ad15935d05050285
PID: http://hdl.handle.net/11304/8fab5b8f-90a3-4b5d-a3c1-be7ec8147740 |
1.5 kB | Download |
|
Checksum: md5:08cb8c0b311066757d77cc034d0528ed
PID: http://hdl.handle.net/11304/7f466d9f-d8a1-4e2e-96ad-43186c188d4c |
1.6 kB | Download |
|
Checksum: md5:813469ad5f4a62d3298d86ac2367220e
PID: http://hdl.handle.net/11304/49155849-803b-4b29-b9be-40e0c2ad7aff |
1.6 kB | Download |
|
Checksum: md5:51ad578d78b720cb03db7a6398f03bfe
PID: http://hdl.handle.net/11304/b1854429-1001-4217-8924-107ff311222a |
1.6 kB | Download |
|
Checksum: md5:bf879903f805f376b1b37e7bad2c98bd
PID: http://hdl.handle.net/11304/23c2d6cc-b832-4ebe-8bf2-269bfb00d97a |
1.6 kB | Download |
|
Checksum: md5:8940ef7a30dff26ab029fea9448f99f2
PID: http://hdl.handle.net/11304/072383d9-1ceb-45e7-a0bc-e3b849e6bffa |
1.5 kB | Download |
|
Checksum: md5:4081991e0bcb4cefded0a84b4f0182c8
PID: http://hdl.handle.net/11304/60f02e05-4881-49ff-b0cc-28fc05d54d52 |
1.5 kB | Download |
|
Checksum: md5:ae01cf964a9ab530bdb0eaf31d36d1a4
PID: http://hdl.handle.net/11304/26325e19-ce58-41c1-9769-45a4b49f501d |
1.3 kB | Preview Download |
|
Checksum: md5:60adcf70f4ac1dcef9d02d36f0912aac
PID: http://hdl.handle.net/11304/428c27ef-d9c4-413e-ab2e-f393757e76b9 |
2.8 kB | Preview Download |
|
Checksum: md5:8d831c45422caabcdd854c4b11b68633
PID: http://hdl.handle.net/11304/4760497e-04c0-4ceb-9697-85ccabb3f26f |
1.5 kB | Download |
|
Checksum: md5:26f17f0e26012e9851d7aabfa942bde4
PID: http://hdl.handle.net/11304/f1beab4b-cdf4-440f-b714-05b73cd1619a |
1.5 kB | Download |
|
Checksum: md5:2d17ae85a7cc6254900871aa96623254
PID: http://hdl.handle.net/11304/cf5ddd98-7f86-4064-8592-e2b0f838e3a3 |
1.5 kB | Download |
|
Checksum: md5:aa212b30074e4604b2282d8e67d634aa
PID: http://hdl.handle.net/11304/37cbae7d-118d-4254-919d-f3525593e546 |
1.5 kB | Download |
|
Checksum: md5:88ede3f2d6e6b8693cf6ebfd465dec5d
PID: http://hdl.handle.net/11304/17d3f5df-e396-4bab-bc08-457e2b0a2a2a |
1.5 kB | Download |
|
Checksum: md5:6eb489740993469d615775a3998effc6
PID: http://hdl.handle.net/11304/c36e26d3-cdda-4f6b-800d-0470fedab36a |
1.5 kB | Download |
|
Checksum: md5:ca7a2fe300ba32ed8b7e7c0b1e194f67
PID: http://hdl.handle.net/11304/2ffc83f6-94e3-4172-a133-04980cd33ba9 |
1.5 kB | Download |
|
Checksum: md5:95f2ce1f3cffe0c4918c7e22ed86213f
PID: http://hdl.handle.net/11304/e1f77dd4-65b9-441a-8cee-a3c6d16f0e52 |
1.5 kB | Download |
|
Checksum: md5:06ee1cb45102ce3f575774fdd4556ed8
PID: http://hdl.handle.net/11304/d0800765-76c1-4ac4-bfb9-d19c37b6a8c8 |
1.5 kB | Download |
|
Checksum: md5:af1a9f398f3f68c2d87d7a5029dcad96
PID: http://hdl.handle.net/11304/981ae93f-340b-4b9f-ab9d-0aef4cf82748 |
1.5 kB | Download |
|
Checksum: md5:d9fe61dd07c9302db65c6302a30001db
PID: http://hdl.handle.net/11304/6b8ae3fe-030a-40ce-a875-6eacd189f535 |
1.5 kB | Download |
|
Checksum: md5:8dfa249b052ec1c06ca31c24138c7bae
PID: http://hdl.handle.net/11304/2be83eba-3529-4e8a-b3c5-f55f45c302ba |
1.5 kB | Download |
|
Checksum: md5:c2d269a09173aa9e4d26f1258d6f625e
PID: http://hdl.handle.net/11304/69b38f0c-1203-4a83-88fc-698d78e9014c |
2.4 MB | Preview Download |
|
Checksum: md5:edd24c57a131c69d911509f9a2741210
PID: http://hdl.handle.net/11304/aede6012-81b8-4ce0-a7f5-4c07dbb0d9b8 |
2.4 MB | Preview Download |
|
Checksum: md5:af513b1caa02e51ae100f45877808fef
PID: http://hdl.handle.net/11304/98776010-b1bb-4169-8c56-18d09f04843e |
2.4 MB | Preview Download |
|
Checksum: md5:90a0654b9dab7a6d1365e9f2d222f09d
PID: http://hdl.handle.net/11304/b88634e3-9ac1-49cc-ae4d-f38d3285bb94 |
2.4 MB | Preview Download |
|
Checksum: md5:6ddb86784bbcb6f2518df3b867ae44e2
PID: http://hdl.handle.net/11304/0c96d731-cd9f-46f7-9a19-c79cb83c41a6 |
8.2 MB | Preview Download |
|
Checksum: md5:3882a46be290a34f131b14d83dde0bb6
PID: http://hdl.handle.net/11304/6c7192f8-5c52-4605-9f1a-d2a8c525875c |
9.3 MB | Preview Download |
|
Checksum: md5:66fbb5232a628f5d6437fab8beb1d33a
PID: http://hdl.handle.net/11304/a011e656-bea2-4c17-a3b4-080bb25774e9 |
8.9 MB | Preview Download |
|
Checksum: md5:663c681fcfd70b6af918b2dc1b25e6d9
PID: http://hdl.handle.net/11304/f6a2303d-27ed-499e-882f-26bd4c8f0711 |
8.5 MB | Preview Download |
Additional details
Identifiers
- URL
- https://etsin.fairdata.fi/dataset/88761527-c193-4351-88e3-84d4a4c24b4a
- b2rec
- 8ceb3da6ce144180b5304ad080af88af
FMI metadata
- Parameter
-
- Parameter name: Figure1_Heatwave_lower_threshold
- Parameter unit: Kelvin
- Parameter description: the 90th percentile of the 5-day moving average temperature in summers 2000-2019
- Topic category
- climatologyMeteorologyAtmosphere
Temporal Coverage
Ranges:
Start date: 2000-05-31
End date: 2019-08-30
End date: 2019-08-30
Spans:
Span:2000-2019